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Abstract. The study of conditional q-entropies in composite quantum systems has recently been the focus
of considerable interest, particularly in connection with the problem of separability. The q-entropies depend
on the density matrix ρ through the quantity ωq = Trρq, and admit as a particular instance the standard
von Neumann entropy in the limit case q → 1. A comprehensive numerical survey of the space of pure
and mixed states of bipartite systems is here performed, in order to determine the volumes in state space
occupied by those states exhibiting various special properties related to the signs of their conditional
q-entropies and to their connections with other separability-related features, including the majorization
condition. Different values of the entropic parameter q are considered, as well as different values of the
dimensions N1 and N2 of the Hilbert spaces associated with the constituting subsystems. Special emphasis
is paid to the analysis of the monotonicity properties, both as a function of q and as a function of N1

and N2, of the various entropic functionals considered.

PACS. 03.67.-a Quantum information – 89.70.+c Information theory and communication theory – 03.65.-w
Quantum mechanics

1 Introduction

Some entangled states of quantum composite systems
(in particular, all pure entangled states) exhibit the no-
table property of having an entropy smaller than the
entropies of their subsystems. This feature of compos-
ite quantum systems, and its connections with other of
their entanglement-related properties, has been recently
investigated by several authors [1–11]. The phenomenon
of entanglement is one of the most fundamental and non-
classical features exhibited by quantum systems [12,13].
Quantum entanglement is the basic resource required to
implement several of the most important processes studied
by quantum information theory [13–19], such as quantum
teleportation [20], superdense coding [21] and the exciting
issue of quantum computation [18]. A state of a compos-
ite quantum system constituted by the two subsystems A
and B is called “entangled” if it can not be represented
as a convex linear combination of product states. In other
words, the density matrix ρAB represents an entangled
state if it can not be expressed as

ρAB =
∑

k

pk ρA
k ⊗ ρB

k , (1)
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with 0 ≤ pk ≤ 1 and
∑

k pk = 1. On the contrary, states
of the form (1) are called separable. The above definition
is physically meaningful because entangled states (unlike
separable states) cannot be prepared locally by acting on
each subsystem individually [22]. Due to the significance
of quantum entanglement, it is important to survey the
state space of composite quantum systems, in order to get
a clear picture of the concomitant entanglement proper-
ties, and of the relationships between entanglement and
other relevant features exhibited by the quantum states.
Significant advances have been made by a program that
attempts performing a systematic exploration of the space
of arbitrary (pure or mixed) states of composite quantum
systems [23–25] in order to determine the characteristic
features shown by these states with regards to the phe-
nomenon of quantum entanglement [23–30].

Separable quantum states share with classical com-
posite systems the following basic property: the entropy
of any of its subsystems is always equal or smaller
than the entropy characterizing the whole system [31].
In contrast, as already mentioned, a subsystem of a quan-
tum system described by an entangled state may have
an entropy greater than the entropy of the whole system,
thus violating the concomitant classical entropic inequali-
ties. This situation holds for the well known von Neumann
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entropy, as well as for the more general q-entropic (or
q-information) measures [1–11], which incorporate both
Rényi’s [32] and Tsallis’ [33–35] families of measures as
special instances. These entropic functionals are charac-
terized by a real parameter q.

The alluded to classical entropic inequalities consti-
tute necessary and sufficient separability criteria for pure
states. The situation is, however, more involved in the case
of mixed states. In the latter case we can find entangled
states that do not violate these inequalities. Consequently,
the classical entropic inequalities provide only necessary
separability criteria. As a matter of fact, the main moti-
vation for studying the classical entropic inequalities (and
their violation by some entangled states) is not any more
the development of practical separability criteria. This is
the case particularly since the introduction of the Positive
Partial Transposition (PPT) criterion by Peres [36], and
the related results obtained by the Horodecki’s [37]. How-
ever, the violation of the classical entropic inequalities is
interesting in its own right, because they constitute, from
the perspective of classical physics, a highly counterintu-
itive property exhibited by some entangled quantum states.
Moreover, this non-classical feature of certain entangled
states is of a clear and direct information-theoretical na-
ture.

The goal of the present work is to investigate further
aspects of the relationship between quantum separability
and the violation of the classical q-entropic inequalities.
By performing a systematic numerical survey of the space
of pure and mixed states of bipartite systems of any di-
mension we determine, for different values of the entropic
parameter q, the volume in state space occupied by those
states characterized by positive values of the conditional
q-entropies. We pay particular attention to the monotonic
tendency shown by these separability ratios as they evolve
with q from finite values to the limiting case q → ∞, for
any Hilbert space’s dimension. The paper is organized as
follows. In Section 2 we briefly summarized some basic
properties of both the q-entropies and the conditional q-
entropies. Our main results are discussed in Section 3.
Finally, some conclusions are drawn in Section 4.

2 Q-conditional entropies

The “q-entropies” depend upon the eigenvalues pi of the
density matrix ρ of a quantum system through the quan-
tity ωq =

∑
i pq

i . More explicitly, we shall consider either
the Rényi entropies [32],

S(R)
q =

1
1 − q

ln (ωq) , (2)

or the Tsallis’ entropies [33–35]

S(T )
q =

1
q − 1

(
1 − ωq

)
, (3)

which have found many applications in many different
fields of physics. These entropic measures incorporate the

important (because of its relationship with the standard
thermodynamic entropy) instance of the von Neumann
measure, as a particular limit (q → 1) situation

S1 = −Tr (ρ̂ ln ρ̂) . (4)

We will be here rather more interested in conditional q-
entropies than in total entropies, because of the former’s
relation with the issue of quantum separability. Condi-
tional entropic measures are defined as

S(T )
q (A|B) =

S
(T )
q (ρAB) − S

(T )
q (ρB)

1 + (1 − q)S(T )
q (ρB)

(5)

for the Tsallis case, while its Rényi counterpart is

S(R)
q (A|B) = S(R)

q (ρAB) − S(R)
q (ρB). (6)

The matrix ρAB denotes an arbitrary quantum state of
the composite system A ⊗ B, not necessarily factorizable
nor separable, and ρB = TrA(ρAB) (the conditional q-
entropy S

(T )
q (B|A) is defined in a similar way as (5), re-

placing ρB by ρA = TrB(ρAB)). Interest in the conditional
q-entropy (5) arises in view of its relevance with regards to
the separability of density matrices describing composite
quantum systems [5,6]. For separable states, we have [11]

S(T )
q (A|B) ≥ 0,

S(T )
q (B|A) ≥ 0. (7)

As already mentioned, there are entangled states (for in-
stance, all entangled pure states) characterized by nega-
tive conditional q-entropies. That is, for some entangled
states one (or both) of the inequalities (7) are not verified.
Since just the sign of the conditional entropy is important
here, we can either use Tsallis’ or Rényi’s entropy, for (5)
and (6) will always share the same sign. In what follows,
when we speak of the positivity of either Tsallis’ condi-
tional entropy (5) or of Rényi’s conditional entropy (6),
we will make reference to the “classical q-entropic inequal-
ities” issue.

3 Volumes in state space occupied
by states of special entropic properties

The systematic numerical study of pure and mixed states
of a bipartite quantum system of arbitrary dimension
N = N1 × N2 requires the introduction of an appropri-
ate measure µ defined over the corresponding space S of
general quantum states. Such a measure is necessary in
order to compute volumes within the space S. The mea-
sure we are going to adopt in the present approach was
introduced by Zyczkowski et al. in several valuable con-
tributions [23,24], and was later extensively used in the
systematic exploration of the space of arbitrary (pure or
mixed) states of composite quantum systems [28–30,38].
Any given arbitrary (pure or mixed) state ρ of a quantum
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system described by an N -dimensional Hilbert space can
always be expressed as the product of three matrices

ρ = UD[{λi}]U †. (8)

U stands for an N × N unitary matrix and D[{λi}] is
an N × N diagonal matrix whose diagonal elements are
{λ1, . . . , λN}, with 0 ≤ λi ≤ 1, and

∑
i λi = 1. The

λi’s are, of course, the eigenvalues of ρ. The Haar mea-
sure ν [39] yields a unique and uniform measure over the
group of unitary matrices U(N). On the other hand, the
N -simplex ∆, defined by all the real N -uples {λ1, . . . , λN}
(cf. Eq. (8)), is a subset of an (N − 1)-dimensional hy-
perplane of RN . Consequently, the standard normalized
Lebesgue measure LN−1 on RN−1 provides a natural mea-
sure for ∆. Thus, the Haar measure ν on U(N) and ∆ on
the N -simplex lead then to a natural measure µ on the
set S of all the states of our quantum system [23,24,39],
namely,

µ = ν × LN−1. (9)

All our present considerations are based on the assump-
tion that the uniform distribution of states of a quantum
system is the one determined by the measure (9). Thus,
in our numerical computations we are going to randomly
generate states according to the measure (9). The situa-
tion encountered in [38] was the following one: the volume
in phase space corresponding to those states complying
with the classical q-entropic inequalities monotonically de-
creases as the entropic parameter q increases, adopting its
minimum value in the limit case q → ∞. In this limit case,
the volume of states with positive conditional entropies
adopts simultaneously: i) its lowest value and also ii) the
one most closely resembling that of the set of states with
positive partial transpose (PPT). The volume of states
with positive conditional q-entropies is, however, even in
the limit case q → ∞, larger than the volume associated
with states with a positive partial transpose. This means
that, regarded as a separability criterion, the classical en-
tropic inequality with q = ∞ is (among the conditional
q-entropic criteria) the strongest one, though it is not as
strong as the PPT criterion. In point of fact, it has been
proven that there is no necessary and sufficient criteria
for quantum separability based solely on the eigenvalues
of ρAB, ρA, and ρB. Our main concern here is not the
study of the classical inequalities qua separability criteria.
Their study is interesting per se because it provides us
with additional insight into the issue of quantum separa-
bility, on account of their intuitive information-theoretical
nature. We want to survey the state-space in order to
obtain a picture, as detailed as possible, of i) how the
signs of the q-conditional entropies are correlated with
other entanglement-related features of quantum states,
and ii) how these correlations depend both on the value
of q and on the dimensionality of the systems under con-
sideration.

As reported in [38], the volume occupied by states with
positive values of the conditional q-entropies decreases
with q in a monotonous fashion as the entropic param-
eter grows from finite q-values to q = ∞. It is to be re-
marked that some authors had previously conjectured [5]

Table 1. Proportion of states which behave monotonously as
q changes. Both Tsallis’ and Rényi’s conditional entropies, for
two-qubits and one qubit-one qutrit systems, are considered.
For a given dimensionality one is to notice how the system
evolves with the rank of the pertinent state ρ.

Tsallis Rényi

2 × 2.Rank, 4 0.972 0.719

Rank, 3 0.850 0.434

Rank, 2 0.204 0.003

2 × 3.Rank, 6 0.996 0.888

Rank, 5 0.99 0.79

Rank, 4 0.96 0.64

Rank, 3 0.84 0.38

Rank, 2 0.32 0.003

that the conditional q-entropy Sq(A|B)[ρ], evaluated in
each particular density matrix ρ, is a monotonous decreas-
ing function of q. This conjecture implies that it should
be enough to consider the value q → ∞ in order to decide
on the positivity of the conditional q-entropies for all q. If
this conjecture were true it would lead, as an immediate
consequence, to the monotonous behavior (as a function
of q) of the volume of states with positive values of the
conditional q-entropies.

Alas, one can find several low-rank counterexamples
to the monotonicity of the conditional Tsallis or Rényi
entropies with q (a particularly interesting case of non-
monotonicity with q of Tsallis’ conditional entropies has
been recently discussed by Tsallis, Prato, and Anteneodo
in [8]). A rather surprising situation ensues: the volumes
associated with positive valued conditional q-entropies be-
have in a monotonous way in spite of the fact that the
alluded to conjecture is not valid. One of the aims of the
present effort is precisely to investigate this point in more
detail. By recourse to a Monte Carlo calculation we have
determined numerically (both for two-qubits and qubit-
qutrit systems) the proportion of states which behave
monotonously as q changes. This involves exploring either
the 15-dimensional space of two-qubits (N = 4) or the
35-dimensional space of one qubit-one qutrit mixed states.
Table 1 shows the results for different ranks, dimensions,
and entropies used for the mixed state ρ. In each case
(that is, for each set of values for q, total Hilbert space di-
mension N = N1 × N2, and rank of ρ) we have randomly
generated 107 density matrices. This implies that the rel-
ative numerical error associated with the values reported
in Table 1 is less than 10−3. We consider it remarkable
that most of the states have a conditional entropy that
behaves monotonically with q, this fact being more pro-
nounced for the case of the Tsallis entropy. The proportion
of these states diminishes as the rank of the state ρ de-
creases, regardless of the dimension and the conditional
entropy used. The general trend suggested by Table 1
is that the percentage of states with monotonous condi-
tional q-entropies increases with the total (Hilbert space’s)
dimension of the system and, for a given total dimension,
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Fig. 1. Conditional Tsallis entropy Sq(B|A) for two sample
states ρ of a two-qubits system (with rank 4) which do not
change in monotonous fashion when q grows. The dashed line
corresponds to a state whose conditional entropy remains posi-
tive for all q-values. The solid line corresponds to a state whose
conditional entropy eventually becomes negative (and, conse-
quently, the state becomes entangled) for large values of q.
The inset depicts, for the last case, details of the rather tiny
region where monotonicity is broken. All quantities depicted
are dimensionless.

increases with the rank of the density operator. This is
fully consistent with the monotonic behavior (as a func-
tion of q) exhibited by the total volume corresponding to
states with positive conditional q-entropies.

Examples of non-monotonous behavior of the condi-
tional q-entropy are depicted in Figure 1, for a pair of
two-qubits states of range four. The dashed line corre-
sponds to a state whose conditional entropy, although non-
monotonous, remains always positive. The continuous line
refers to an entangled state such that S

(T )
q (A|B) < 0 for

large enough q-values. The q-interval in which the mono-
tonicity of the last state is broken is depicted in the inset.
One gathers form these results that it seems correct to re-
gard q → ∞ as the right value to ascertain positivity for a
single given state ρ, as was recently suggested by Abe [10]
on the basis of his analysis of a mono-parametric family
of mixed states for multi-qudit systems.

To further explore the issue of monotonicity we have
computed the fraction of the total state space volume oc-
cupied by (that is, the probabilities of finding) states with
positive conditional q-entropies (for both (i) different finite
values of q and (ii) q = ∞), in the case of bipartite quan-
tum systems described by Hilbert spaces of increasing di-
mensionality. Let i) N1 and N2 stand for the dimension of
the Hilbert space associated with each subsystem, and ii)
N = N1 ×N2 be the dimension of the Hilbert space asso-
ciated with the concomitant composite system. We have
considered two sets of systems: (1) systems with N1 = 2
and increasing values of N2, and (2) systems with N1 = 3
and increasing dimensionality. The computed probabili-
ties for the first set of systems are depicted in Figure 2,
as a function of the total dimension N . The case of the
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Fig. 2. Probability of finding a state ρ for systems in 2 × N2

dimensions which, for different values of q, has its two con-
ditional q-entropies positive. Different curves are assigned to
various values of q. These curves “saturate” when the limit
q → ∞ is reached. Also, two regimes of growth with the di-
mension are to be noticed. See text for details. The lines are
just a guide for the eye. All quantities depicted are dimension-
less.
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Fig. 3. Same as in Figure 2 for systems of 3×N2 dimensions.
Values of probabilities are higher and the rate of saturation is
different. All quantities depicted are dimensionless.

second set is depicted in Figure 3. In order to obtain each
point in Figures 2 and 3 (as well as to obtain each of the
points appearing in the subsequent figures of this article)
we have randomly generated 107 density matrices. This
leads to Monte Carlo results with a relative, numerical er-
ror less than 10−3. In Figure 2 one plots different values
of the probabilities associated with positive conditional
q-entropy for (a) q = 2, 4, 8, 16, and ∞ and (b) different
values of the total dimension N of the system.
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With respect to the behavior of these probabilities,
one is to focus attention upon two aspects: i) evolution
with q for a given N and ii) evolution with the dimension
for fixed q. In the first instance one clearly sees a common
behavior for all N . As q increases, the probabilities of find-
ing states that comply with the classical entropic inequali-
ties decreases, with different rates, down to the saturating
value corresponding to q → ∞. This tendency is univer-
sal for any dimension and answers the query about the
monotonicity of the “q-volumes” occupied by states be-
having “classically” in what regards to their conditional
q-entropy. With respect to the second aspect, i.e., evolu-
tion with N for fixed q, one sees that for any value of q, and
for N ≤ 6, all the curves of Figure 3 behave in an approx-
imately linear fashion (sure enough, this linear behavior
can not continue for arbitrarily large values of N). There
is also a sort of “transition” in the behavior of the prob-
abilities, depending on the value of q. For small q values,
as the total dimension N = 2×N2 grows, the conditional
q-entropies tend to behave classically: the probabilities of
positive conditional entropies increase in a monotonous
way with N and approach 1. This “classical behavior” is
ruled out beyond a certain value of q, when the system,
as its dimension increases, exhibits the quantum feature
given by negative conditional entropies. This behavior is
more pronounced for higher q-values. Interestingly, these
two behaviors seem to be “separated” by a certain “criti-
cal” value q = q∗. The probabilities of finding states with
positive conditional (q = q∗)-entropies are (when keeping
N1 constant) rather insensitive to changes in N2. In the
case of Figure 1 we have q∗ ∈ [2, 4].

We pass now to the consideration of systems for which
the former qubit is replaced by a qutrit (Fig. 3). This fig-
ure exhibits the features already encountered in Figure 2
(for the same values of q). For a fixed dimension, all prob-
abilities are monotonous with q and, again, the curves
exhibit two types of qualitative behavior. As q grows, one
seems to pass from one of them to the other at a certain
critical q = q∗-value. This special q-value discriminates be-
tween i) the region where the “classical” behavior of the
conditional entropies becomes more important with in-
creasing N , from ii) the region where negative conditional
entropies (which can not occur classically) are predomi-
nant for large N . In this case, q∗ lies, as before, between
the values 2 and 4. It is interesting to notice, after glancing
at both Figures 2 and 3, that the probabilities of finding
states with positive conditional q-entropies are not just a
function of the total dimension N = N1 × N2, as is the
case, with good approximation, for the probability of hav-
ing a positive partial transpose (this was already noted
in [38]). The probabilities of having positive conditional
q-entropies depend on the individual dimensions (N1 and
N2) of both subsystems.

A better insight into the monotonicity issue (how
the probabilities of having positive conditional entropies
change with q) is provided by Figures 4 and 5. In Fig-
ure 4 we depict, for N = 2 × N2 systems, the evolution
of those probabilities with q, for fixed values of the total
dimension N . A similar evolution is plotted in Figure 5
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Fig. 4. Probability of finding a state ρ (for systems of 2 × N2

dimensions) which has its two conditional q-entropies of a pos-
itive nature vs. 1/q. Different curves correspond to different
dimensions. The monotonic decreasing behavior of these prob-
abilities is apparent. The lines are just a guide for the eye. All
quantities depicted are dimensionless.
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Fig. 5. Same as in Figure 4, but for systems in 3×N2 dimen-
sions. All quantities depicted are dimensionless.

for N = 3 × N2 systems. The curves in these two figures
behave in similar fashion. For given values of N1 and N2,
the probabilities decrease in a monotonous way with q.
On the other hand, for a fixed q-value, the probabilities
behave in a monotonous fashion with N2. Again (as was
already mentioned in connection with Figs. 2 and 3), there
seem to be a special q-value, q∗, such that above q∗ the
probabilities decrease with N2, while below q∗, the oppo-
site behavior is observed.

Thus far we have considered specific systems for which
one of the parties has fixed dimension while that of its
partner augments. But what if we consider the case of
composite systems with N1 = N2 = D (that is, two-
qudits systems)? It was already shown in [38], for the case
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q = ∞, that the concomitant probabilities of finding states
complying with the classical entropic inequalities (that is,
having positive both conditional q-entropies) exhibit a be-
havior that is quite different from the one previously dis-
cussed. Indeed, the numerical evidence gathered for q = ∞
in [38] suggests that, for an N1 ×N2-composite system of
increasing dimensionality, the probability trends that in-
terest us here are clearly different if one considers either
(i) increasing dimension for one of the subsystems and con-
stant dimension for the other, or (ii) increasing dimension
for both subsystems. In case (i) we have that, for q = ∞,
the probabilities of finding states with positive conditional
q-entropies diminish as N grows. In the present effort we
have extended the study of case (i) to finite values of q,
obtaining a similar type of behavior for q-values above a
certain special value q∗. In case (ii) the probability of find-
ing states complying with the classic entropic inequalities
steadily grows with N and approaches unity as N → ∞.
The reader is referred to Figure 10 of [38]. The evolution of
the probabilities for systems with N = D × D for finite q
does not qualitatively differ from that pertaining to the
limit case q → ∞. As far as monotonicity is concerned,
these probabilities share the monotonic behavior (with q)
so far discussed for a fixed dimension.

We will now look at two-qudits systems from the fol-
lowing, different perspective: instead of considering the
probability of states having positive conditional entropies
for both parties, consider the behavior, as a function of the
entropic parameter q, of the global probability that an arbi-
trary state of a two-qudit systems exhibits either (i) both a
positive conditional q-entropy and a positive partial trans-
pose, or, (ii) both a negative conditional q-entropy and a
non positive partial transpose. That is, we now focus at-
tention on the probability that i) Peres’ PPT criterion
and ii) the signs of the conditional q-entropies (regarded
as the basis of a separability criterion), both lead to the
same answer as far as separability or entanglement are
concerned.

Figures 6 and 7 illustrate the cases D = 3 (N = 3× 3)
and D = 4 (N = 4 × 4), respectively. We depict there the
referred to probabilities as a function of 1/q, for values
of q ∈ [2, 20]. Keeping also in mind the results plotted in
Figure 5 of reference [38] (for D = 2), we conclude that
(i) agreement with Peres’ criterion becomes larger in all
cases as q increases up to q = ∞, and (ii) the largest
degree of agreement, achieved in this limit case, rapidly
decreases as D augments from its D = 2-amount (nearly
75 per cent [38]) to the D = 3-one (Fig. 6) of nearly
22 per cent, and further down to the D = 4-instance
(Fig. 7) of 4.5 per cent.

We also computes, for composite systems of (Hilbert
space) dimensions 2 × N2 and 3 × N3, the volumes oc-
cupied by those states complying with the majorization
separability criterion [31]. The results are depicted in Fig-
ure 8, where the alluded to volumes are compared with
the volumes associated with states endowed with positive
(q = ∞)-conditional entropies. It can be seen in Figure 8
that the qualitative behaviour of these volumes (as a func-
tion of N2) is similar. In particular, for states of dimen-
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Fig. 6. Probability (as a function of q) of finding a two-qudits
state (D × D, D = 3) which is characterized by either i) pos-
itive conditional q-entropy and positive partial transpose, or
ii) a negative conditional q-entropy and a non positive partial
transpose. As q grows so does the degree of agreement with
the PPT-criterion, from the von Neumman (q = 1) case to the
“best” q → ∞ improves. The lines are just a guide for the eye.
All quantities depicted are dimensionless.
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Fig. 7. Same as in Figure 6 for a system of D = 4 two-qudits.
Notice that, as compared to the D = 3 case, the values of
the pertinent probabilities are considerably smaller here. All
quantities depicted are dimensionless.

sion 3×N2, the volumes associated with the majorization
condition are very close to those associated with positive
(q = ∞)-conditional entropy.

4 Conclusions

A systematic survey of the space of pure and mixed states
of bipartite systems of arbitrary dimension has been per-
formed, in order to study in detail the behavior of the
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Fig. 8. The volumes (for composite systems with Hilbert space
dimensions 2×N2 and 3×N2) occupied by (i) states complying
with the majorization separability criterion and (ii) states en-
dowed with positive (q = ∞)-conditional entropies. The lines
are just a guide for the eye. All quantities depicted are dimen-
sionless.

state space-volume occupied by those states endowed with
positive conditional q-entropies, as a function of both the
parameter q and the dimensions N1 and N2 of the consti-
tuting subsystems. The monotonicity with q of both the
Tsallis and Rényi entropies has been analyzed for two-
qubits and a qubit-qutrit system, for different values of
the rank of the pertinent (mixed state) statistical opera-
tor ρ. In spite of the fact that most states have a Tsallis or
Rényi conditional entropy behaving in a monotonic fash-
ion with q, the proportion of these states always dimin-
ishes as the rank of the state ρ decreases, regardless of the
dimension of the system and the conditional entropy used.
The proportion of states with a monotonous conditional
entropy is larger for the case of the Tsallis information
measure.

Concerning the volumes in state-space associated with
states complying with the “classical” entropic inequalities,
we have presented results for states of dimensions 2 × 2
up to 2 × 10 and for states ranging from 3 × 3 to 3 × 7.
In general, the volume occupied by states with positive
conditional q-entropies (for a given q) is not a function
solely of the total dimension N = N1 × N2. Instead, it
depends on both subsystems’ dimensions, N1 and N2. For
a given fixed value of N1 = 2, 3, and for q-values above
a special value q∗ (which itself depends upon N1), the
alluded to volume decreases in a monotonous way with N2.

In addition, the behavior of two-qudits systems of di-
mension 3× 3 and 4× 4 has also been taken into account.
In all these cases, our numerical results indicate that the
probability of finding states endowed either with (i) pos-
itive conditional q-entropies and a positive partial trans-
pose, or (ii) negative conditional q-entropies and a non
positive partial transpose, increase in a monotonic way
with q. However, the largest value of this probability (cor-

responding to q = ∞) diminishes in a very fast fashion
with D.

Finally, we computed the volumes (for composite sys-
tems with Hilbert space dimensions 2 × N2 and 3 × N2)
occupied by states complying with the majorization sep-
arability criterion, and compared them with the volumes
corresponding to states endowed with positive (q = ∞)-
conditional entropies. The qualitative behaviour (as a
function of N2) of the volumes associated with states com-
plying (i) with the majorization condition and (ii) with
the classical, (q = ∞)-conditional entropic inequalities,
turned out to be qualitatively alike (and very close to each
other in the case of systems of dimension 3 × N2).
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